On the Road to a New Sweet Sorghum Industry in the USA

Gillian Eggleston¹ and Matthew Heckemeyer²

¹Lead Scientist Sugar & Energy CRIS Project USDA-ARS-SRRC New Orleans, LA, USA

²CEO Heckemeyer Mill Sikeston, MO, USA

Presentation Outline

Key value added products from sugar feedstocks – the "Sugar Platform"

- Advantages of sweet sorghum over other crops
- USDA-ARS New Orleans research on sweet sorghum
- Largest operational sweet sorghum biorefinery in USA: Heckemeyer Mill, Sikeston, Missouri, USA
- Overcoming processing problems with help of USDA scientists

Sugar Platform

Biomass Conversion Technologies

BIOCHEMICAL Sugar Fermentation Platform

CHEMICAL Oleochemical/Chemical Platform

Fuels, Chemicals, Energy & Co-products

THERMOCHEMICAL Gasification Platform

Key Value Added Products from Sugar Feedstocks "Sugar Platform" - From Chemical or Biocatalytic Processes **C6 C2** Citric acid \rightarrow Food preservative Ethanol \rightarrow Liquid fuel Gluconic acid \rightarrow Food acidulent Acetic acid \rightarrow Wood glue Lysine \rightarrow animal feed Glyoxylic acid \rightarrow skin care $HMF \rightarrow plastics$ products **Glucaric** acid Sorbitol C6 or C5 Sugars **C5 C**3 Lactic acid → PLA Furfural \rightarrow Industrial solvents Levulinic acid \rightarrow Rubber/resins **Biodegradable plastic**

Xylitol \rightarrow low calorie sweetener **Glutamic acid**

Itaconic acid

Butanol → Liquid fuel Acr Succinic acid → Polymers/ surfactants/adhesives

C4

Aspartic acid Butanediol

Biodegradable plasti 1,2-Propanediol 3-Hydroxy Propionic acid Acrylic acid

Set -

The Development of the Sugar Platform Will Depend On:

- > Application of chemical and bio-catalysts to transform sugars into useful biobased chemical intermediates and downstream products
- Successful scaling up of biocatalysts from "proof-ofconcept" experiments on a laboratory scale to commercial industrial process scale - only beginning to emerge
- > Availability of economic, readily-available source or sources of sugar feedstocks (expected to transition to ligno-cellulosic derived sugars)
 - > At present mainly focused on corn, cassava starch, and sugarcane molasses
- > Availability of stable, transportable, and storable feedstocks for year-round use

Sweet Sorghum

Advantages of Sweet Sorghum over Other Crops for Biofuels and Bioproducts

Adapts well to adverse environments •Requires relatively low inputs

•Comparable efficiency as sugarcane

1 - 2 crops per year (Temperate)
• Improves economics immensely

Can be processed with a dual feed stock •Makes it a low cost seasonal crop •Sugarcane and sugar beet

Can be used in existing ethanol factories

• Much easier to ferment than corn with higher ethanol output potential

Genetic improvement potential is HUGE •Hybrid and tailor made sweet sorghum cultivars

World Map Depicting Approximate Areas Where Sweet Sorghum, Sugarcane, and Sugar Beet can be Grown

Adapted from Debor (2009).

USDA-ARS Sweet Sorghum Research Objectives of the New Sugar & Energy CRIS Project 2014-2019

 All objectives and sub-objectives are focused on solving industry problems after discussions with numerous industrial stakeholders

Interrelationships of New Project Objectives

Develop Technologies That Enable Growth and Profitability in the Commercial Conversion of Sugarcane, Sweet Sorghum, and Energy Beets into Sugar, Advanced Biofuels, and Bioproducts

Sugarcane for Sugar Manufacture

Sweet Sorghum and Energy Beets for Advanced Biofuels and Bioproducts Manufacture

Objective 1. Develop commercially -viable technologies that reduce undesirable effects of starch and color on processing and end–product quality

Objective 2. Develop commercially-viable technologies that reduce or eliminate undesirable effects of high viscosity on sugar processing and end-product quality.

וו

Objective 4. Develop commerciallyviable technologies for the biorefining of sugar crop feedstocks into advanced biofuels and bioproducts. Objective 5. Identify and characterize field sugar crop traits that affect sugar crop refining/ biorefining efficiency, and collaborate with plant breeders in the development of new cultivars/ hybrids.

Objective 6. Develop, in collaboration with commercial partners, technologies that enable production of marketable products from residues and by-product streams.

Lead Scientist

Largest Sweet Sorghum Biorefinery in USA

HECKEMEYER MILL (2015)

Sikeston, Missouri, USA

¥.

- Poultry
- Cattle
- Timber

Row crop sweet sorghum

Row-cropped sweet sorghum

- Multiple Cultivars: e.g., M81E, Honey Drop, Dale, and KN Morris
 - Plant late May/Early June
- Stagger the rotation for timely harvest
- Process from Mid August (depends on Juice Brix)
- Modified Forage Harvesting up to 2.5 inch billets

Double Tandem 4 ft Wide Roller Mill

Overcoming Processing Problems with Help of USDA Scientists

Aim: Large, Commercial Scale Manufacture of Food Grade and Non-Food Grade Syrup

August to October, 2014

Major Starch Problem

Eggleston et al (2015.). Sugar Tech

Heated, De-aerated Sweet Sorghum Juice

Formation of Flocs (Light Color) which are Starting to Precipitate

Clarified (Clean) Juice

Scum formed on surface

Eggleston Clarification Process

92% Turbidity Removal over 1 hr

New Late Season Problem

Light Green Scum Formation on Surface of Clarification Tank

7.93 ± 0.52% protein on a dry wt basis

- Has to be skimmed off or filter pressed
- Highlights seasonal variations that warrant further investigation

Syrup (Long-Term) Storage

Overall Process and Supply Chain for Syrup Production at Heckemeyer Mill

High Value Cattle Feed

2015 Process and Supply Chain for Syrup Production at Heckemeyer Mill

Capacity of Mill is 90 tons/hr which is approx. 120 acres/day or 24,000 gals of 80 Brix syrup/day

