

DEDICATED TO SUSTAINABILITY

NexSteppe Vision

Be a leading provider of scalable, reliable and sustainable <u>feedstock solutions</u> for the biofuels, biopower and biobased product industries

The Big Picture

Biomass Sorghum

Biomass

Commercial Seed Shipping to Customers

Palo Alto in Brazil

2014 Field Day

SEFIEL

Commercial Harvest

Transportation

601069

5

NexSteppe Works Closely With Many of the Leading Companies in the Biobased **Economy**

Demand from Around the World

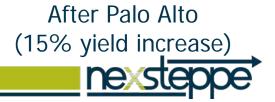
Why Sorghum?

- For the grower...
 - High-yielding
 - Harvest in 3-4 months
- Can be rotated with other crops
- Established agronomic systems
- For the processor/project developer...
 - Drop-in
 - Broad geographic adaptation
 - Heat and drought tolerant
- For the seed company...
 - Huge genetic diversity
 - Rapid breeding and product development cycle
 - Fast scale-up
 - Established hybrid systems
 - Seed propagated

Key Attributes of Biomass Sorghum Equate to Lower GHG emissions

- High yields with short growth cycle, opportunities for inter-cropping and ability to grow on more marginal land lead to low, no or even positive <u>indirect land use change</u>
- Lower <u>agricultural input requirements</u> than for most traditional row crops and other dedicated energy crops
- Below-ground sequestration by extensive root systems provide rapid carbon sink
- Lower transportation inputs due to lower moisture at harvest and higher yields enabling smaller collection radius
- Optimized composition (through genetics and management practices) improving <u>process yields</u> for conversion technologies

Low, No or Even Positive Indirect Land Use Change


- Short cycle times allow biomass sorghum to be grown in <u>rotation</u> with food crops
 - Producing biofuel feedstocks through increased intensity of agricultural land utilization, using systems like crop rotation, significantly reduces actual indirect land use change
 - Crop rotation can lead to zero or even positive land use change as food crop yields are increased through the benefits of crop rotation
- Lower water needs and industrial end-use make biomass sorghum a compelling choice for marginal, degraded or contaminated land
 - Use of land that is uneconomic or unsafe to grow forage or food crops reduces or eliminates food crop displacement
 - Biomass sorghum used for biopower being considered for remediation of cropland with heavy metal contamination
- <u>High yields</u> mean biomass sorghum yields require less land to produce the same amount of end product
 - US EPA estimates that biomass sorghum will yield approximately 30 dry tons/hectare by 2022 compared to 16 dry tons/hectare for switchgrass
 - Compared to ~4500 liters per hectare of ethanol produced per year by corn, biomass sorghum can produce >6,000 per cycle, even at today's field and process yields, with the potential for multiple cycles per year in many locations

Demonstrated Benefits to Food Crop Yields from Rotation with Sorghum

Without rotation

Lower Agricultural Inputs and Water Requirements

- Biomass sorghum has <u>low fertilizer requirements</u> compared to other feed crops and dedicated energy crops
 - US EPA estimates that biomass sorghum requires only 30% of the fertilizer of switchgrass
 - Biomass sorghum has <u>low water requirements</u> and is resilient even during periods of drought. It...
 - Requires only 2/3 of the total water of maize, 1/2 that of sugarcane
 - Is less sensitive to the timing of water availability
 - Depletes soil water profiles less than many other row crops

Below-Ground Carbon Sequestration

- High biomass sorghum has a substantially <u>larger</u> <u>root system</u> than, e.g., corn, making it better at scavenging for water and preventing leaching of nutrients
 - The annual nature of sorghum combined with appropriate management practices allows <u>compounding accumulation of this root</u> biomass
- Sorghum crops, both in continuous growth and in crop rotation patterns, <u>significantly increase soil</u> organic carbon

Reduced Fuel Use in Transport

- High yields significantly <u>reduce collection radius</u> required for a given facility
 - Yields per hectare of nearly 12X wastes and residues reduces collection area from 80,000 Ha to 20,000 Ha for a 300MGY 2G ethanol plant
 - Low moisture of Palo Alto biomass sorghum at harvest <u>reduces hauled weights</u> lowering fuel requirements
 - Palo Alto biomass sorghums are typically 55-60% moisture at harvest as compared to 75-85% for traditional forage or silage crops

Improved Product Yields per Ton

- Increased levels of accessible cellulosic sugars in 2G ethanol feedstocks
 - Increases processing efficiency
 - <u>Reduces capital costs</u> (due to smaller front-end for same output)
 - Reduces gross feedstock requirements, and
 - Reduces the necessary footprint of the feedstock supply area
 - NexSteppe Palo Alto biomass sorghum hybrids have been identified by the US EPA as having <u>higher cellulosic content</u> than other tested sorghums
- Reducing moisture at harvest from 80% to 55% results in a corresponding gain in energy content of approximately 125% (LHV of 8.07 MJ/Kg compared to 3.59 MJ/Kg).
 - Avoiding use of winrowing to dry sorghum also dramatically reduces deleterious components of ash picked up with soil (e.g. silica)

